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MoM-SO: a Complete Method for Computing the
Impedance of Cable Systems Including Skin,
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Abstract—The availability of accurate and broadband models
for underground and submarine cable systems is of paramount
importance for the correct prediction of electromagnetic tran-
sients in power grids. Recently, we proposed the MoM-SO
method for extracting the series impedance of power cables while
accounting for skin and proximity effect in the conductors. In
this paper, we extend the method to include ground return effects
and to handle cables placed inside a tunnel. Numerical tests show
that the proposed method is more accurate than widely-used
analytic formulas, and is much faster than existing proximity-
aware approaches like finite elements. For a three-phase cable
system in a tunnel, the proposed method requires only 0.3 seconds
of CPU time per frequency point, against the 8.3 minutes taken
by finite elements, for a speed up beyond 1000 X.

Index Terms—Electromagnetic transients, broadband cable
modeling, series impedance, skin effect, proximity effect, ground
effects

I. INTRODUCTION

ELECTROMAGNETIC transients are a growing concern
in the design and operation of power systems. Their

prediction using Electro-Magnetic Transient (EMT) programs
like [1], [2] requires broadband models for each component
of the power system, including underground and submarine
cables [3], [4], [5]. In order to create a cable model for
transient analysis, we require the per-unit-length (p.u.l.) series
impedance of the cable over the frequency range of interest,
which typically extends from a few Hz to the MHz range.
The broadband p.u.l. parameters of the cable must account
for frequency-dependent phenomena that take place inside the
cable, namely skin and proximity effects. Moreover, for buried
cables, they must also take into account the return current that
may flow in the surrounding soil.

Existing EMT tools use analytic formulas [6], [7] to com-
pute the series impedance of cables. Such formulas include
skin effect but neglect proximity effects which are significant
in closely-packed cables, where conductors’ proximity leads
to a non-uniform current distribution in the conductors. For
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buried cables, the contribution to the impedance due to ground
return is added through Pollaczek’s formula [8]. Since Pol-
laczek’s formula involves an infinite integral, a series approx-
imation due to Saad [9] is typically preferred. This approach,
however, is not accurate at high frequency for certain cable
configurations, as our numerical tests will show. Additionally,
Pollaczek’s formula neglects proximity effects inside ground,
and cannot account for the presence of a tunnel around the
cable. The limitations of analytic formulas can be overcome
using finite elements (FEM) [10], [11], [12], [13] or conductor
partitioning [14], [15], [16], [17]. These approaches correctly
capture skin, proximity and ground effects [18]. However, they
can be very time consuming. Since ground is a poor conductor,
at low frequency skin depth in earth can be as high as 5 km1.
Therefore, the FEM mesh must extend over a huge domain
in order to correctly predict losses in ground. Moreover, as
frequency grows and skin depth becomes very small, one is
forced to remesh the geometry in order to correctly model
current crowding near conductors’ boundaries. These issues
make a FEM analysis very time consuming and impractical for
a power engineer that typically does not have a deep expertise
in finite element methods. The development of a fast and easy-
to-use method to accurately characterize power cables is the
objective of this research.

In [19], [20], we proposed an efficient and proximity-aware
method, dubbed MoM-SO, to compute the series impedance of
cables with round conductors, both solid and hollow (tubular).
In this technique, conductors are represented through an equiv-
alent current placed on their surface. Using a surface admit-
tance operator [21] and the Green’s function of the surrounding
medium, this representation allows for the computation of the
cable impedance. This approach is faster than finite elements
or conductor partitioning because it does not require a meshing
of the whole cross section of the cable system, but only a
discretization of the conductors’ boundary. In this paper, we
extend our previous work [20] in two directions. Firstly, we
fully include ground return effects, which were only taken into
account in an approximate way in [20]. Secondly, the proposed
method can handle cables placed inside one or multiple holes
or tunnels dug in ground. In order to account for the effect of
the hole/tunnel on the cable impedance, we introduce a surface
admittance representation for the cable-hole system, which is
a novel result and makes the computation very efficient.

The paper is organized as follows. After formulating the

1at 1 Hz and for a soil conductivity of 0.01 S/m.
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problem in Sec. II, we develop the surface admittance operator
for the cable-hole system in Sec. III. In Sec. IV, the effect of
ground conductivity is introduced using the Green’s function
of the air-ground medium, and in Sec. V the p.u.l. cable
impedance is obtained. Finally, in Sec. VII the proposed
MoM-SO method is compared against a commercial FEM
solver [22] and analytic formulas. Numerical tests demonstrate
the excellent accuracy and computational efficiency of MoM-
SO.

II. PROBLEM FORMULATION

Our goal is to compute the p.u.l. impedance, as defined in
[23], of a cable system made by round metallic conductors
buried into one or multiple holes dug in a conductive soil. A
simple configuration is depicted in Fig. 1, and will be used
to describe the MoM-SO technique. For the sake of clarity,
we will develop the theory behind MoM-SO considering only
solid conductors and a single hole. However, as discussed in
Sec. VI, the proposed method can handle both solid conductors
and hollow (tubular) conductors, placed in one or multiple
holes excavated in ground. Hollow conductors are useful to
model screens and armouring structures found, for example,
in pipe-type cables.

We denote with P the number of conductors present in
the cable system. As shown in Fig. 1, the p-th conductor
is centered at (xp, yp) and has radius ap. Each conductor
has electric permittivity ε, magnetic permeability µ, and con-
ductivity σ. Although, for simplicity of notation, we assume
here that these properties are the same for all conductors, the
proposed method can handle different conductive materials
with obvious modifications. Conductors are located inside a
round hole, which is centered at (x̂, ŷ) and whose radius is â.
The space inside the hole is lossless with permittivity ε̂ and
permeability µ̂. The background medium consists of air for
y > 0 and of a lossy soil of conductivity σg for y < 0. Both
air and ground have permittivity ε0 and permeability µ0.

We are interested in computing the p.u.l. resistance RRR(ω)
and inductance LLL(ω) matrices that relate the potential Vp of
each conductor to the current Ip flowing in each conductor as

∂V

∂z
= − [RRR(ω) + jωLLL(ω)] I , (1)

where vectors V =
[
V1 V2 . . . VP

]T
and I =[

I1 I2 . . . IP
]T

store, respectively, the potential and cur-
rent of each conductor. In our approach, the cable param-
eters are computed assuming that the electromagnetic field
is longitudinally invariant along the cable, neglecting “end
effects”. These effects may be relevant for short cables [24].
In order to account for them, a 3D formulation must be
used, increasing dramatically the computational cost. For this
reason, our method is based on transmission line theory, which
is extensively used in cable modeling [7], [8], [18], [17]. For
a discussion on end effects, we point the Reader to [24].
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Fig. 1. Cross-section of a simple cable with two conductors used to
illustrate the proposed method. Notation for the conductivity, permittivity and
permeability of each element is established. The coordinate system used in
the paper is also presented.
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Fig. 2. Left panel: cross-section of the cable in Fig. 1 after all conductors
have been replaced by the surrounding hole medium. Equivalent currents
J
(p)
s (θp) are introduced on their contours. Right panel: cross-section of the

cable after application of the equivalence theorem to the boundary of the hole.
An equivalent current Ĵs(θ̂) is introduced on the hole boundary ĉ.

III. SURFACE ADMITTANCE REPRESENTATION FOR THE
CABLE-HOLE SYSTEM

A. Surface Admittance Representation for the Conductors

In order to compute the p.u.l. impedance of the cable,
we adopt the surface admittance approach of [21]. Firstly,
we represent each conductor with an equivalent current on
its surface. Then, the same operation will be performed on
the hole boundary, leading to a very compact and efficient
representation for the hole-cable system. We let

rp(θp) = (xp + ap cos θp) x + (yp + ap sin θp) y (2)

be the position vector which traces the contour cp of conductor
p, as shown in Fig. 1. We expand the longitudinal electric field
on the contour cp in a truncated Fourier series

Ez(θp) =

Np∑
n=−Np

E(p)
n ejnθp , (3)

where Np controls the number of basis functions used to
represent the field on the boundary. Numerical tests show that
a Np of 3 or 4 is typically sufficient to accurately represent the
electrical field in the conductors of a power cable [25]. The
number of basis functions Np can be determined automatically
as discussed in [25].

We now replace each conductor with the surrounding hole
medium, introducing an equivalent current J (p)

s (θp) on its
boundary, as shown in the left panel of Fig. 2. If J (p)

s (θp)
is chosen according to the equivalence theorem [26], this
operation does not change the fields outside the conductors,
allowing for the extraction of the p.u.l parameters.
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The equivalent current on cp is also expanded in a truncated
Fourier series

J (p)
s (θp) =

1

2πap

Np∑
n=−Np

J (p)
n ejnθp . (4)

Equivalence principle imposes the following relation [21]
between the Fourier coefficients of electric field (3) and surface
current (4)

J (p)
n = E(p)

n

2π

jω

[
kapJ ′|n|(kap)
µJ|n|(kap)

−
k̂apJ ′|n|(k̂ap)

µ̂J|n|(k̂ap)

]
, (5)

where J|n|(.) is the Bessel function of the first kind [27]
of order |n|, and J ′|n|(.) is its derivative. The quantities
k =

√
ωµ(ωε− jσ) and k̂ = ω

√
µ̂ε̂ denote, respectively,

the wavenumber inside the conductors and inside the hole.
If we collect the Fourier coefficients E(p)

n and J
(p)
n of all

conductors into two column vectors

E =
[
E

(1)
−N1

E
(1)
−N1+1 . . . E

(1)
N1

E
(2)
−N2

. . .
]T

, (6)

J =
[
J
(1)
−N1

J
(1)
−N1+1 . . . J

(1)
N1

J
(2)
−N2

. . .
]T

, (7)

we can compactly write (5) as

J = YsE , (8)

where matrix Ys can be interpreted as a surface admittance
operator which relates the equivalent current (4) on the con-
ductors to the corresponding electrical field (3). Details on
the surface admittance matrix Ys can be found in [19]. At
this point, we have considerably simplified the geometry of
the problem and obtained the configuration shown in the left
panel of Figure 2.

B. Surface Admittance Representation for the Cable-Hole
System

We next show that it is possible to further simplify the
problem at hand by representing the entire cable-hole system
with a unique equivalent current density Ĵs(θ̂) placed on
the hole’s boundary, as shown in Fig. 2 (right panel). The
boundary of the hole is denoted by ĉ and can be described by
the position vector r̂(â, θ̂) where

r̂(ρ̂, θ̂) =
(
x̂+ ρ̂ cos θ̂

)
x +

(
ŷ + ρ̂ sin θ̂

)
y , (9)

for ρ̂ ∈ [0, â], and θ̂ ∈ [0, 2π].
Similarly to our approach for round conductors, we repre-

sent the magnetic vector potential on the boundary of the hole
with a truncated Fourier expansion

Âz(θ̂) =

N̂∑
n=−N̂

Ân ejnθ̂ . (10)

The coefficients of this expansion are cast into vector Â =[
Â−N̂ . . . ÂN̂

]T
. We replace the hole medium and all

the equivalent currents inside it by the surrounding ground
medium, as shown in Fig. 2 (right panel). In order to keep

the fields outside of the hole unchanged, we introduce an
equivalent current

Ĵs(θ̂) =
1

2πâ

N̂∑
n=−N̂

Ĵn ejnθ̂ , (11)

on the hole boundary ĉ. The coefficients of Ĵs(θ̂) are stored

in vector Ĵ =
[
Ĵ−N̂ . . . ĴN̂

]T
. From the equivalence

principle [26], it follows that the equivalent current must read

Ĵs(θ̂) =

[
1

µ0

∂Az(ρ̂, θ̂)
∂ρ̂

− 1

µ̂

∂Âz(ρ̂, θ̂)
∂ρ̂

]
ρ̂=â

, (12)

where Âz(ρ̂, θ̂) is the longitudinal magnetic potential inside
the hole in the configuration shown in the left panel of Fig. 2.
Instead, Az(ρ̂, θ̂) is the magnetic potential inside the hole in
the configuration shown in the right panel of Fig. 2, i.e. after
application of the equivalence theorem.

In order to evaluate (12), we must determine the magnetic
potential inside the hole. We first find the magnetic potential
Âz(ρ̂, θ̂), which must satisfy the non-homogeneous Helmholtz
equation [26]

∇2Âz + k̂2Âz = −µ̂
P∑
q=1

J (p)
s (θp) (13)

subject to the Dirichlet boundary condition (10) on ĉ. The
forcing term in (13) is the sum of all equivalent currents inside
the hole. The solution of (13) can be written as the sum of the
general solution Â′z(ρ̂, θ̂) and the particular solution Â′′z (ρ̂, θ̂)

Âz(ρ̂, θ̂) = Â′z(ρ̂, θ̂) + Â′′z (ρ̂, θ̂) . (14)

1) Particular Solution Â′′z : The particular solution of (13)
at an arbitrary point inside the hole is given by [26]

Â′′z (ρ̂, θ̂) = −µ̂
P∑
q=1

ˆ 2π

0

J (q)
s (θ′q)Ĝ

(
r̂(ρ̂, θ̂), rq(θ

′
q)
)
aq dθ

′
q .

(15)
This formula is the superposition of the potential caused by the
equivalent current introduced on each conductor. The integral
kernel in (15) reads

Ĝ (r, r′) =
j

4
H(2)

0

(
k̂ |r− r′|

)
(16)

and corresponds to the Green’s function of a homogeneous2

medium [26] with permittivity ε̂ and permeability µ̂.
2) General Solution Â′z: The general solution of (13) is

given by [26]

Â′z(ρ̂, θ̂) =

N̂∑
n=−N̂

CnJ|n|
(
k̂ρ̂
)

ejnθ̂ , (17)

where coefficients Cn are found by enforcing the bound-
ary condition (10), and are stored into a vector C =[
C−N̂ . . . CN̂

]T
. By substituting (15) and (17) into (14),

the boundary condition (10) can be imposed using the method

2We remark that we are solving (13) only inside the contour ĉ shown in
the right panel of Fig. 2. In this region, the medium is homogeneous.
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of moments [28], a mathematical technique to solve integral
equations numerically. This process, which is analogous to the
one detailed in [19], provides an algebraic expression for the
coefficients C

C = D1

(
Â + µ̂Ĝ0J

)
, (18)

where D1 is a diagonal matrix with diagonal entries (n, n)
equal to

[D1][n,n] = (J|n|(k̂â))−1 (19)

for n = −N̂ , . . . , N̂ . The matrix Ĝ0 in (18) is the discrete
counterpart of the Green’s function (16) and can be obtained
with the procedure presented in [19].

3) Vector potential Az: We calculate the term Az(ρ̂, θ̂)
in (12), which is the fictitious field inside the hole when
the hole and equivalent currents inside it are replaced by the
ground medium. This term is the solution of the Helmholtz
equation (13) with the right hand side term set to zero, and
k̂ replaced by the wavenumber kg =

√
ωµ0 (ωε0 − jσg)

of the surrounding ground. Accounting for the boundary
condition (10), the solution is given by [26]

Az(ρ̂, θ̂) =

N̂∑
n=−N̂

Ân
J|n|(kgρ̂)

J|n|(kgâ)
ejnθ̂ . (20)

4) Equivalent Hole Current: We can finally derive the
equivalent current Ĵs(θ̂). We substitute (11), (20), (17),
and (15) into (12) to get the equation

N̂∑
n=−N̂

Ĵn
2πâ

ejnθ̂ =

[
P∑
q=1

ˆ 2π

0

J (q)
s (θ′q)

∂Ĝ

∂ρ̂
aqdθ

′
q (21)

−
N̂∑

n=−N̂

(
k̂Cn
µ̂
J ′|n|

(
k̂â
)
− Ân

kgJ ′|n|(kgâ)

µ0J|n|(kgâ)

)
ejnθ̂

 .
The obtained integral equation is solved for the coefficients Ĵn
using the method of moments [28] to obtain, with a process
similar to the one given in [19], the following formula

Ĵ = ŶsÂ + TJ . (22)

Equation (22) shows that the equivalent current Ĵ that rep-
resents the cable-hole system is made by two components.
The first term is the contribution of an empty hole without
conductors inside. This term is analogous to the surface
admittance (8) of a single round conductor [19], [21], and
involves the diagonal matrix Ŷs with entries[

Ŷs

]
[n,n]

= 2πâ

[
kg
µ0

J ′|n|(kgâ)

J|n|(kgâ)
− k̂

µ̂

J ′|n|(k̂â)

J|n|(k̂â)

]
, (23)

for n = −N̂ , . . . , N̂ . The second term in (22) is due to the
conductors present in the hole. The transformation matrix T
maps the currents J on the conductor boundaries to the equiv-
alent current Ĵs(θ̂) on the hole boundary. The transformation
matrix T is given by

T = 2πâ
[
G̃0 −D2Ĝ0

]
, (24)

where D2 is a diagonal matrix with entries

[D2][n,n] = k̂
J ′|n|(k̂â)

J|n|(k̂â)
, (25)

for n = −N̂ , . . . , N̂ , and matrix G̃0 comes from the dis-
cretization of the derivative of the Green’s function (16).
Expression (22) is one of the main contributions of this work,
since it provides an efficient way to represent the cable-hole
system, which in turn will enable a fast computation of the
cable impedance.

IV. INCLUSION OF GROUND RETURN EFFECTS

At this point, we have replaced the cable-hole system with
a single equivalent current placed on the hole boundary, as
shown in the right panel of Figure 2. We now couple the cable-
hole representation with an integral equation describing the
behavior of the air-ground medium which surrounds the hole.
This will allow us to determine the magnetic vector potential
Âz on the hole boundary and then, in Sec. V, calculate the
p.u.l. impedance of the cable.

By the definition of magnetic vector potential, we can
relate the current and vector potential through the integral
equation [29]

Âz(â, θ̂) = −µ0

ˆ 2π

0

Ĵs(θ̂
′)Gg

(
r̂(â, θ̂), r̂(â, θ̂′)

)
âdθ̂′ ,

(26)
where Gg is the Green’s function of medium made by two
layers, in our case air and ground. This Green’s function
reads [30]

Gg(x, y, x
′, y′) =

1

4π

ˆ ∞
−∞

e−jβx(x−x′)√
β2
x − k2g

(27)

[
e−|y−y

′|
√
β2
x−k2g +RTM e(y+y

′)
√
β2
x−k2g

]
dβx ,

where

RTM =

√
β2
x − k2g −

√
β2
x − k20√

β2
x − k2g +

√
β2
x − k20

, (28)

where k0 = ω
√
µ0ε0 is the wavenumber of air. In (27), we use

x, y, x′ and y′ to express the x-component and y-component
of the position vectors r̂(â, θ̂) and r̂(â, θ̂′). We next substitute
the truncated Fourier expansions (10) and (11) into (26), and
apply the method of moments [28] to convert the resulting
integral equation into a standard algebraic equation

Â = −µ0GgĴ , (29)

where Gg is the discretization of the Green’s function (27).
By substituting (22) into (29) we obtain the coefficients of the
magnetic vector potential on the hole boundary

Â = −µ0

(
1 + µ0GgŶs

)−1
GgTJ , (30)

where 1 is the identity matrix.
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V. COMPUTATION OF PER-UNIT-LENGTH PARAMETERS

In order to compute the p.u.l. impedance of the cable, we
need the electric field on the boundary cp of each conductor,
which can be obtained from the vector potential Âz and the
scalar potential V as [29]

Ez(rp(θp)) = −jωÂz −
∂V

∂z
. (31)

Next, we substitute (1) and (14) into (31) to obtain, after
discretization with the method of moments [28], the algebraic
equation

E = −jωĤC + jωµ̂ĜcJ + U [RRR(ω) + jωLLL(ω)] UTJ , (32)

where matrices Ĝc and Ĥ come from the discretization of
particular solution (15) and general solution (17), respectively.
The constant matrix U is the same as the one defined in [19].
By substituting (18) and (30) into (32), we get

E = jωΨJ + U [RRR(ω) + jωLLL(ω)] UTJ , (33)

where

Ψ = ĤD1

[
µ0

(
1 + µ0GgŶs

)−1
GgT− µ̂Ĝ0

]
+ µ̂Ĝc .

(34)
In (34), the term between square brackets accounts for the
presence of hole and of the air-ground interface and was not
considered in previous works [19], [20], which only accounted
for the factor µ̂Ĝc. This last term is the only one needed to
model a cable which is buried into a homogeneous soil at
infinite depth and is not surrounded by a hole. From (33),
the p.u.l. resistance and inductance matrices can be finally
obtained using the steps presented in [19]

RRR(ω) = Re

{(
UT (1− jωYsΨ)

−1
YsU

)−1}
, (35)

LLL(ω) = ω−1Im
{(

UT (1− jωYsΨ)
−1

YsU
)−1}

. (36)

Expressions (35) and (36) are used in the numerical examples
of Sec. VII to calculate the p.u.l. parameters of several cable
systems.

VI. EXTENSION TO HOLLOW CONDUCTORS AND
MULTIPLE HOLES

For the sake of clarity, we have described the proposed
method considering only solid round conductors buried into
a single hole. However, the proposed technique can handle
any arrangement of solid and hollow conductors buried into
multiple holes dug in lossy soil. In this section, we discuss how
hollow conductors and multiple holes can be easily introduced
in the theoretical frameworks discussed so far.

In order to include a hollow conductor, we first replace it
with two equivalent currents placed on the inner and outer
boundary of the conductor [20]. Then, the surface admittance
operator of a hollow conductor [20] provides the relation
between equivalent currents and electric field necessary to
form (8). In presence of multiple holes, the process of
Sec. III-B is first applied to each hole independently. An
equivalent current (11) is introduced on the boundary of the

spacing

depth

ground (ε0, µ0, σg)

air (ε0, µ0)

Fig. 3. System of three single core cables used for validation in Sec. VII.
Conductive media are shown in gray while insulating media are shown in
white.

TABLE I
SINGLE CORE CABLES OF SEC. VII-A: GEOMETRICAL AND MATERIAL

PARAMETERS

Core Outer diameter = 39 mm, ρ = 3.365 · 10−8 Ω · m
Insulation t = 18.25 mm, εr = 2.85

Sheath t = 0.22 mm, ρ = 1.718 · 10−8 Ω · m
Jacket t = 4.53 mm, εr = 2.51

hole, and related to the equivalent currents present inside that
specific hole through (22). Then, one integral per hole is added
to the right hand side of (26).

VII. NUMERICAL RESULTS

A. Three Single Core Cables Buried in Earth

We compare the proposed MoM-SO method against a
commercial FEM solver (COMSOL Multiphysics [22]) and the
“cable constant” formulas [6]. As a first test case, we consider
a system of three single core (SC) cables buried in ground at
a depth of 1 m, as shown in Fig. 3. With this example, we
also demonstrate that MoM-SO can handle multiple holes and
hollow conductors.

1) Geometrical and Material Properties: The geometrical
and material parameters of the three SC cables are presented in
Table I. Two different values for cable spacing are considered:
s = 2 m and s = 85 mm. The conductivity of ground is set
to 0.01 S/m.

2) Simulation Setup: Both FEM and MoM-SO are set up to
extract the impedance matrix of the system of six conductors
(three core conductors plus three hollow screens), assuming
the return path for the currents to be at infinity. Impedance
is evaluated at 31 frequency points logarithmically spaced
between 1 Hz and 1 MHz.

In MoM-SO, we set to 4 the order Np and N̂ of the Fourier
expansions (3), (4), (10), and (11). This value is sufficient to
accurately describe proximity effects even when the SC cables
are close to each other [25]. In the FEM solver, the solution
mesh has to be carefully set up to achieve good accuracy.
Ground has to be meshed up to a distance of three times the
skin depth, in order to properly calculate ground return current.
For the first 25 frequency points, we used a mesh with 725,020
triangles for the s = 85 mm case, and 837,618 triangles for
the s = 2 m case. At the last six frequency points, which
are spread between 100 kHz and 1 MHz, skin depth becomes
extremely small, and the mesh has to be refined inside the
conductors. This required the use of the so-called boundary
layer elements, and increased mesh size to 1,053,638 for the
s = 2 m case.
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3) Continuously-grounded Screens: We consider two dif-
ferent scenarios for this example: grounded screens and open
screens. In the first case, we assume ideal grounding, and
we calculate the 3 × 3 impedance matrix of the cable from
the 6 × 6 impedance matrix by setting the potentials of
the screens to zero. The positive-sequence resistance and
inductance obtained with MoM-SO, FEM and cable constant
formulas are presented in Fig. 4. The zero-sequence resistance
and inductance are instead shown in Fig. 5.3 The excellent
agreement observed between FEM and MoM-SO validates
the proposed technique. Since screens are grounded, there is
little proximity effect between the three SC cables. Hence,
cable constant formulas provide accurate results. The p.u.l.
resistance is different for s = 2 m and s = 85 mm because
mutual impedance is different in the two cases. We remark that
the ideal grounding assumption has been used here only for
simplicity. Such assumption is not required by the proposed
MoM-SO method, that can be used to study more complex
cable systems with cross-bonding, as shown in [20].

4) Open Screens: In this second case, screens are not
grounded but left open. As a consequence, large sheath over-
voltages [32], [33] and a significant proximity effect between
the three SC cables can develop. When screens are left open,
screen currents are zero, which allows us to reduce the 6× 6
matrix to a 3×3 matrix. Figure 6 shows the positive-sequence
resistance and inductance for the case where cables are close
together (s = 85 mm). MoM-SO and FEM accurately capture
the impedance variation due to skin and proximity effect in
conductors and ground. Cable constant formulas with Pol-
laczek and Saad ground return formulas, on the other hand,
return accurate results only at low frequency, and become
inaccurate beyond 100 Hz. Moreover, Saad formula [9] returns
a negative resistance at high frequency. If cable spacing is
increased to 2 m, the results from cable constant formulas
agree reasonably with FEM and MoM-SO, confirming that
the deviation observed in Fig. 6 is due to proximity effects.
Figure 6 also shows the resistance and inductance obtained
with our previous method [20], where MoM-SO is used to
model proximity effects in conductors, and cable constant
formulas (Pollaczek) are used to model ground return effects.

5) Timing Results: Table II shows the CPU time taken by
MoM-SO and FEM to analyze the cable system. FEM requires
more than 6 minutes per frequency point, while MoM-SO only
0.8 s. This dramatic speed up, beyond 400X, comes from the
fact that, with the MoM-SO method, one has to mesh neither
the cross section of the conductors nor the surrounding ground
where return current may flow. On the other hand, the complex
mesh needed to capture ground return effects and skin effect at
high frequency makes FEM very time consuming. Moreover,
with FEM, the user must spend extra time to properly set
up the mesh generator, since default settings may not lead to
accurate results. MoM-SO, instead, being meshless, is much
easier to use, and can be fully automated [25].

3Positive-sequence impedance is defined as the ratio of positive-sequence
voltages and currents. Similarly, zero-sequence impedance is defined as the
ratio of zero-sequence voltages and currents [31].
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Fig. 4. Cable system of Sec. VII-A: positive-sequence resistance (top panel)
and inductance (bottom panel) computed using FEM (◦), MoM-SO (·), and
cable constant (- -). Screens are continuously grounded.
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Fig. 5. As in Fig. 4, but when a zero-sequence is applied to the cable.

B. Effect of Ground Resistivity

We consider the three SC cables with spacing s = 85 mm
and ground conductivity σg = 100 S/m. This high conductiv-
ity value is used to show how proximity effects in ground in-
fluence the cable impedance. We let the phase conductors open
and inject currents in the sheaths. Figure 7 shows the resistance
and inductance obtained in this scenario with MoM-SO, FEM
and the method of [20], which neglects proximity effects in
ground. The excellent agreement between MoM-SO and FEM
shows that the proposed method correctly captures proximity
effects in both conductors and ground. Proximity effects inside
conductors start being relevant at 100 Hz. Proximity effects
in ground develop instead above 10 kHz, as can be seen by
comparing the results from the proposed technique against
those computed with the method of [20], which neglects
proximity in ground. This hybrid method uses the MoM-SO
approach for conductors, and Pollaczek formula for ground
effects. Since for this configuration Pollaczek formula returns
a negative resistance above 2 MHz, the corresponding curve



IEEE TRANSACTIONS ON POWER DELIVERY 7

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

R
es

is
ta

n
ce

 p
.u

.l
. 
[ 

Ω
/k

m
]

Frequency [Hz]

10
0

10
2

10
4

10
6

0.25

0.3

0.35

0.4

In
d
u
ct

an
ce

 p
.u

.l
. 
[m

H
/k

m
]

Frequency [Hz]

Fig. 6. Cable system of Sec. VII-A: positive-sequence resistance (top panel)
and inductance (bottom panel) computed using FEM (◦), MoM-SO (·), cable
constant with Pollaczek ground return ( ), cable constant with Saad ground
return ( ) and MoM-SO with approximate ground return effects [20] ( ).
The screens of the cables are open.

TABLE II
EXAMPLE OF SEC. VII-A: CPU TIME REQUIRED TO COMPUTE THE

IMPEDANCE AT ONE FREQUENCY

Case MoM-SO (Proposed) FEM Speed-up
s = 85mm 0.80 s 371.21 s 464 X
s = 2m 0.80 s 452.77 s 566 X

and the curve of [20] are truncated.

C. Three Single-Core Cables Inside a Tunnel

Finally, we consider a system of three SC cables placed
inside a tunnel. The cross-section of the system is depicted
in Fig. 8. Cables are spaced by s = 85 mm, and their
characteristics are reported in Table I. Sheaths are left open at
both ends.

Firstly, FEM and MoM-SO are used to compute the
positive- and zero-sequence impedance of the cable in pres-
ence of the tunnel. Secondly, the computation is repeated with
the tunnel removed and the cables buried directly in ground.
The resistance and inductance values obtained for both cases
are shown in Fig. 9. The influence of the tunnel on the cable
impedance is visible above 3 MHz on both resistance and
inductance. The results obtained with MoM-SO match closely
those obtained with FEM. However, MoM-SO took only 0.29 s
per frequency point against the 498.3 s taken by FEM, for a
speed up of 1,734 times. The high computational efficiency of
MoM-SO makes it practical for routine use, differently from
FEM which can be quite time-consuming and requires special
care in the setup of the mesh.

VIII. CONCLUSION

This paper presents MoM-SO, an efficient numerical tech-
nique to compute the series resistance and inductance of power
cables while accounting for skin, proximity and ground return
effects. MoM-SO can handle any arrangement of solid and
tubular round conductors buried in a lossy ground medium.
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Fig. 7. Cable system considered in Sec. VII-B: resistance (top panel) and
inductance (bottom panel) computed using FEM (◦), MoM-SO (·), cable
constant with Pollaczek ground return ( ), cable constant with Saad ground
return ( ), and MoM-SO with approximate ground return effects [20] ( ).
Phase conductors are open, and current is injected in the sheaths.

2 m1 m

ground (ε0, µ0, σg)

air (ε0, µ0)

tunnel (ε0, µ0)

1.5 m

Fig. 8. System of three single-core cables in a tunnel considered in
Sec. VII-C. Conductive media are shown in gray while insulating media are
shown in white.

Conductors can be placed in one or more holes or tunnels
excavated in ground. MoM-SO accounts for several factors
that influence cable impedance, namely skin effect, prox-
imity effects in both conductors and ground, ground return
current, finite burial depth, and the presence of a hole or
tunnel around the cable. Comparison against finite elements
shows that MoM-SO accurately predicts such phenomena
from the Hz to the MHz range. MoM-SO is considerably
faster than finite elements, since speed-ups beyond 1000X
have been demonstrated. Also, since MoM-SO avoids mesh-
related issues, it is easier to use than finite elements. In
conclusion, MoM-SO makes the modeling of power cables
for transient analyses simpler and more accurate, especially in
those scenarios where proximity effects cannot be neglected
and, consequently, widely-used analytic formulas cannot be
applied [20], [34].
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